
2 WILMOTT magazine

Stefan Dirnstorfer
Email: stefan@thetaris.com
Andreas J. Grau
Leopoldstrasse 244, 80807 München, Germany
Email: grau@thetaris.com

Computer Aided Finance
Another journey in the quest for the
Holy Grail of financial engineering

the products traded. We propose a product description language that is both simple
and general. It is suitable for computer processing, enabling tools to automatically de-
rive pricing algorithms. Important features of this language are shown and examples
for a wide range of derivatives presented.

Abstract
With a unified theory for pricing any derivative still eluding the financial engineer-
ing community, a new approach to product modelling is presented that may help the
industry deal with the new trends towards ever-increasing volume and complexity of

Since the dawn of risk neutral derivative pricing a theoretical frame-
work exists that should allow us to compute a price for every financial
derivative. The theory requires every source of risk to have an associated
financial product that can be traded infinitely often and in infinitesi-
mally small quantities. In the last decades markets have become increas-
ingly “complete” in the mathematical sense due to a large increase in
the volume of trades and a larger variety of product types. This also
means that increasingly complex derivative products are traded on the
market. However, new product types that enter the market are typically
sensitive to new risk factors that are slightly different to those risks trad-
ed before. Even when all liquidly traded derivatives are considered, mul-
tiple models for the risk factors and underlying market parameters can
be derived, further complicating the models. Typically this will also in-
hibit the computation of a unique price. Hence, the single theory that
prices every derivative still remains a dream. This paper aims for a new
method instead, that allows the convenient pricing of products with re-
spect to all available models.

Looking at the current state of the market, two very clear trends can be
observed. Derivatives are traded in increasingly large numbers and with
increasingly complex product features. Small investors trade more and
more structured products, especially in Germany. According to resources
of the German Derivative Organisation (Deutscher Derivate Verband), the
open interest of exchange-traded structured products increased from

€24bn (2004) to €99bn (2008). At the same time the number of different
derivative types that are available at any one time increased by 96% in
2006 and 87% in 2007. By the end of 2007 there were more than 257,329
different derivative securities available for sale on German stock ex-
changes. Similar numbers could be found for other markets.

The large number of different derivative types coincides with the in-
creasing complexity of these products. Many investors no longer proper-
ly understand the risks involved with the instruments they trade. Law
suits have been filed by numerous investors who bought OTC constant
maturity spread ladder swaps and did not understand the risks. Some of
these investors were awarded refunds by German courts who agreed
with their arguments that the risks were not communicated properly
(Bastian & Benders, 2008).

How do financial engineers currently cope with these trends on the
derivative markets? To capture the risks and rewards of a derivative
product, computer models are made at various stages of the develop-
ment process. Initially, the structurer inventing the product has to de-
sign a mathematical model of the product to optimize the risk and
reward for the bank as well as the customer. Next, the trader needs to use
an implementation of the model in order to create fair market prices.
Finally, in risk management the product model is re-invented in order to
accurately assess the associated risks. The whole process suffers from the
mundane task of implementing very similar models with only slight

simple and yet is backed by a solid mathematical and computational in-
terpretation. It focuses on financial product features and abstracts these
from numerical details. Stochastic models and numeric algorithms al-
ready have useable mathematical notations. Having separate notations
for all three aspects allows the development of a compiler that generates
pricing algorithms automatically. We consider the following features to
be crucial to effective financial modelling.

• EExxpprreessssiivveenneessss: All features of a financial product are representable
in a precise and compact manner.

• MMoodduullaarriittyy: The product structure is separated from model stochas-
tics and numerical details.

• TTrraannssppaarreennccyy: It is easily comprehensible and allows for concise
communication and documentation of financial product details.

• IInntteeggrraabbiilliittyy: Easy integration of existing code allows to build upon
previous work.

• SSiimmpplliicciittyy: Little learning effort is required for a computer literate.

Expressiveness is important since a description language needs to be
able to encompass all types of investments in a modelled portfolio. It is
also necessary that all important legal clauses, delivery options and day-
count conventions forming the trade can be represented precisely and
concisely.

Modularity allows a separation of concerns, such that product struc-
turers can focus on product features and quants can focus on the pricing
model. Furthermore, modular code greatly improves maintainability.

The next aspect — transparency — serves several purposes. First of all,
the maintainability is again improved. Furthermore, communication be-
tween the parties involved in portfolio management can greatly improve.
Describing a product in an intuitive and compact way makes it easier to
communicate how the product works.

Reuse of stochastic models and numerical procedures is important to
allow a smooth transition from the previous modelling process to the
new one. Integrability of existing functionality can be guaranteed by a
programming paradigm that is very close to standard procedural pro-
gramming, facilitating variables and procedure calls.

Finally, the language should be simple and easy to learn. Basic pro-
gramming skills should suffice to learn the language. Widely used prim-
itives, such as loops, conditionals and function evaluations, can build
the foundation of such a language.

The suggested solution: ThetaML

The remainder of this article introduces ThetaML, a language that ex-
hibits the features postulated above. The following concepts and lan-
guage constructs are used.

• ThetaML is an extension to a simple procedural programming lan-
guage. Hence function calls and fundamental commands to control
the program flow are available.

• Commands are written in a chronological order. Every action with
any quantitative effect is written according to their real order.
Additional commands let time pass (tthheettaa) or make commands run
in parallel (ffoorrkk).

^

TECHNICAL ARTICLE 1

variations, requiring tedious work that often results in redundant and
error-prone code. If the processes of modelling and implementing the
models were separated, large parts of this effort could be automated.

Related disciplines have faced similar problems and solved them by
implementing a more efficient development process with the aid of com-
puters. Traditional engineering has been revolutionized from a state of
manual blueprint processing to a new era where digital data formats
contain all necessary details of a modelled object. From this description
everyone involved in the process can automatically extract the relevant
information, e.g. for analyzing important model properties. In some ap-
plications, the complete production process from design to manufactur-
ing is automated to such a degree that the final product can be printed
by a 3D printer. This method has become known as CAD (Computer Aided
Design).

The vision of creating a similar environment in financial engineering
has been around for a long time. The main task in financial engineering
is the creation of executable implementations of financial models, which
can be facilitated by a domain specific language and accompanying tools.
Domain specific languages offer substantial gains in expressiveness and
ease of use compared with general-purpose programming languages in
their domain of application (Marjan Mernik et al., 2005). Various sugges-
tions have been made for a standardized representation of financial mod-
els that would enable automated processing of associated computational
tasks. One such approach is the industry standard FpML (ISO 15022), an
XML dialect that allows the specification of a wide range of financial se-
curities. It is designed as an exchange data format for the specification of
security trades [Fpml 4.0]. However, it is not suitable for the description
of new products or the automated derivation of algorithms, since it does
not address the internal structure of a security. Various kinds of deriva-
tives are distinguished by different names only.

Other approaches claim to be more generic, but little information is
publicly available, since they are packaged as proprietary software prod-
ucts. One example is the specification language MLFi for derivatives,
which originates from a functional programming style language [Jones
et al., 2000]. Various competing vendors for pricing engines also have cre-
ated their own proprietary definition languages, which are used prima-
rily to configure their pricing engine. An open standard for product
definition has not yet been defined.

Clearly there is demand on the market for more comprehensive mod-
elling support in the area of financial products. The current state of the
art is dominated by quick and dirty code hacking. Large amounts of re-
dundant code is developed. Aspects of product design, stochastic market
model and numerical tweaks are often mixed together. This makes it dif-
ficult to accurately document and communicate the model. A definition
language for financial products and trading strategies could help in the
communication between different departments from research, trading
to risk management. After all, it should not be too difficult to come up
with such a standard.

1 A New Approach
To address the problems outlined above, we propose a new notation for
describing the structure of financial products. The notation is generic,

WILMOTT magazine 3

4 WILMOTT MAGAZINE

• Conditional stochastic measures on backward variables make it pos-
sible to access expected values and risks from a trader’s perspective.
The backward access operator “!” allows to access variable values as
if the program flow was reversed for that particular access. In con-
trast to other languages this allows referencing of variables that
have no value assigned yet.

ThetaML can be used to define financial products, financial pricing
problems and dynamic hedging problems in a concise manner. The lan-
guage can be automatically translated into numerical algorithms.
Hence, it is not only a description language, but also specifies a precise
numerical problem to be solved. Being completely independent of the
numerical scheme, Monte Carlo, PDE solvers or trees could be used to
compute the result. Any financial engineer who designs or analyzes a
certain financial product in ThetaML can focus on the problem domain
without having to worry about the numerics.

2 Introductory Examples: Fixed Income

2.1 Hello world!

It is common to introduce new programming languages by a “Hello
World” example. In the case of ThetaML this will be a product definition
for an instant cash earning. Cash payments are one of the fundamental
actions of any financial model. The framework suggested here represents
such a transaction with the most common concept of a procedural pro-
gramming language: An assignment. Here is the “Hello World” in
ThetaML, which returns the cash value of €100:

Consider EUR to be a variable holding the cash value of a €1 payment at
that time. The value of the “CashNow” financial product is €100. The
script just assigns that value to a variable.

2.2 Zero bond

Heading to the next level we now want to model a zero bond. A bond is
basically a set of deferred payments happening at some later time in the
future. In this example we import a variable T to represent the time to
maturity. The ThetaML command tthheettaa is followed by the time that pass-
es. All operations in the program are written in chronological order.
Hence, the time passing operation is followed by a cash payment. We rep-
resent the payment as an assignment to variable V. It might be worth
noting that coupon bonds could easily be modelled by increasing the
value V using a statement like V=V+coupon.

As a consequence of using the tthheettaa command, the evaluation of EUR
occurs at a later time T. We remember that EUR is the present value of a

€1 payment and thus time dependent. More formally, we define the EUR
variable as a sequence (€t)t∈R

+ . At each time step t the value of this nu-
meraire is a stochastic value €t(ω)∈ R . Following the terminology of
Monte Carlo pricing we will also refer to ω ∈ � as a scenario and to €t as
paths of the discount factor EUR.

The script below assigns the present value of a future payment to vari-
able V. This value is usually stochastic and is not yet the bond price. The
mathematical result can be written as V(ω) = 100€T (ω), which is the dis-
counted present value of a payment of 100 EUR at time T.

2.3 Pricing a zero bond

Next we naturally want to evaluate the price of such a bond. We evalu-
ate that price in a risk-neutral setting as the expected value condi-
tioned on our knowledge at time zero. Consider a probability space
(�,F ,P). In the next model we now assign values to the two variables
V and P, operating in this space. While the value of V is measureable at
time T, its expected value is deterministic at time zero. At time zero,
the exact discount factor EUR might not be known, since it depends on
a stochastic model. Thus, the exact value of V is not known at time
zero, but we can perform the computation of the expected value of V.
The expected value E(V) is measureable at time zero and our model as-
signs this value to P which is then exported as the price of the bond. A
precise definition of such relationships can be found in (Dirnstorfer,
2006).

Since P depends on a future value of V, a backward reference is re-
quired. ThetaML can access future definitions by adding an exclamation
mark, in the example E(V!). The “!” operator references the definition of V,
which is assigned later in the code. This means the actual value of V!
depends on the later value of the discount factor EUR. Adding the line
P = E(V!) extends the previous model “Bond” to the computation of the
bond price at the initial time.

model CashNow

import EUR "Numeraire"

export V "Value"

V = 100 EUR

end

model Bond

import EUR "Numeraire"

import T "Maturity"

export V "Value"

theta T

V = 100 EUR

end

model BondPrice

import EUR "Numeraire"

import T "Maturity"

export P "Price"

P = E(V!)

theta T

V = 100 EUR

end

WILMOTT MAGAZINE 5

2.4 Pricing a coupon bond

An important concept in ThetaML is the notation in chronological order.
Sometimes it is necessary to express simultaneous actions. This is en-
abled by the ffoorrkk statement, which creates parallelized code blocks. Each
block advances in model time independent of the other blocks. Unlike in
multi-threaded computer programming there are no race conditions. In
case of two statements happening at the same model time, the original
code order implies the interpretation order.

In the next example the two scripts show two representations of a
bond that pays €5 coupons after 6 months and after 1 year. Finally, a face
value of €100 is payed in addition. Again, the bond price at the initial
time is computed by the line P = E(V!). This example shows how different
actions at different times can be represented: The left script presents a
parallel and the right script a serial execution.

This section concludes the introduction of ThetaML features. Two
commands and one access operator enhance a normal programming lan-
guage. The commands are tthheettaa, which defines the model time, and EE,
the expected value of future variables. The operator “!” is used to define
the access of a variable’s future value.

3 Derivatives
Having laid out the basics of the ThetaML language we now move on to
more interesting financial products. The additional programming concepts
introduced make the definition of arbitrarily complex products simple.

3.1 European option

In this setting we import a new stochastic variable for the stock price S,
which again is a stochastic process (St)t∈R

+ . The option price is again de-
termined at time zero, with respect to a risk neutral probability space
(�,F ,P). We model the payoff max(100 − S, 0) to be paid in € and mul-
tiply the discount factor EUR accordingly. The following example is a put
option with a strike of 100. Different payoff functions “could effectively
be modelled using the same language features”.

3.2 Bermudan option

Modelling early exercises is certainly one of the biggest challenges for de-
scriptive languages. The ThetaML approach allows this with the few con-
cepts introduced above.

In the next example we consider a Bermudan style option that is ex-
erciseable every day, considering 250 working days per year. Therefore
we use a lloooopp statement that cycles over a sequence of daily actions as
many times as there are days to maturity time. The first operation is
again a tthheettaa that advances the model time by one day. Then a condi-
tional execution decides whether the option should be exercised. This
decision is based on the expected value E(V!). The E function inside the
loop is now evaluated at a time greater than zero and conditioned on
the knowlegde at that time E (V|Ft), whereas time t is the total time
passed, or the sum of all arguments to tthheettaa previous to this E
function.

For an option exerciseable in continuous time (e.g. an American op-
tion) we need to introduce another mathematical concept into ThetaML.
The command ddtt represents the length of a sufficiently small time step.
The actual value of ddtt could be evaluated by a numeric limit to zero or an-
alytic concepts. The limit must of course exist, otherwise the ThetaML is
invalid. The next code fragment shows a continuous action that takes T
time.

^

TECHNICAL ARTICLE 1

model coupon bond1

import EUR

export P

P = E(V!)

fork

theta 1

V = V! + 5 EUR

end

fork

theta 6/12

V = V! + 5 EUR

end

theta 1

V = 100 EUR

end

model coupon bond2

import EUR

export P

P = E(V!)

theta 6/12

V = V! + 5 EUR

theta 0.5

V = V! + 5 EUR

V = 100 EUR

end

model EuropeanOption

import EUR "Numeraire"

import S "Stock price"

import T "Maturity"

export P "Price"

P = E(V!)

theta T

V = max(100 − S, 0) ∗ EUR

end

model BermudanOption

import EUR "Numeraire"

import S "Stock price"

import T "Maturity"

export P "Price"

P = E(V!)

loop T∗250
theta 1/250

if E(V!) > max(100 − S, 0) ∗ EUR

V = max(100 − S, 0) ∗ EUR

end

end

V = max(100 − S, 0) ∗ EUR

end

6 WILMOTT MAGAZINE

3.3 Compound option

Finally, we show a possible combination of previously defined options.
Many structuring approaches focus on a combination of individual prod-
ucts in the way that assets are combined in a portfolio. Such a combina-
tion is also possible in ThetaML by adding or substracting payments.
Additionally this approach enables a new type of structuring. One prod-
uct can be reused as an underlying of another product, naturally creat-
ing options on options and so on.

The next example creates a compound option. The price of a
Bermudan option is imported as Pb from what was defined as price P in
the original model. This is conducted by the ccaallll command, which allows
reusing the American option model defined previously. The price is al-
ready discounted so we only need to discount the €10, build the payoff
function and create an expected value. This is an European option on a
Bermudan option. Note that the commands are written strictly in their
real chronological order. First, we determine the option’s price P, then
the maturity time T1 is awaited, then a decision on buying an inner
option is made and finally, the inner option realizes.

You can look at ThetaML as a computer programming language that
has convenient features to define numerical problems associated with
derivative pricing and financial analysis. However, ThetaML is also a suit-
able domain specific language for the definition of financial products in
all their quantitative implications for the holder and the issuer.

3.4 Contracts and pricing

In order to serve as a trade specification, a ThetaML script needs a few
conventions to be precise. For instance, in the case where a ThetaML

script defines a financial product that is traded between two parties, the
use of the EE operator is restricted: Only two types of uses are permitted in
financial trade definitions. One refers to a long embedded option, exer-
ciseable by the holder. The other refers to a short embedded option, exer-
ciseable by the issuer. Respectively they are written as

V = max (E(V!), ...)

and

V = min (E(V!), ...).

There are other equivalent expressions constructed as iiff-eellssee-eenndd state-
ments, or inserting other names and formulas for the price variable V.

Note that, for exchanging precise product definitions, the parties in-
volved must agree on the meaning of the specific variables: Input param-
eters like “Stock price” and “Maturity time” are sufficient for product
pricing and risk management purposes. But, a trade specification needs
to capture more details such as the parties involved and whether the set-
tlement type is physical or cash delivery. Given an agreement on the pre-
cise specifications of the input and output data can be reached, ThetaML
has the potential to serve as a better trade definition standard (e.g. ex-
tending FpML).

4 Numerical Evaluation
In this section we focus on the numerical evaluation of ThetaML code. It
is possible to define a mathematically precise interpretation of ThetaML,
since ThetaML is equivalent to the operator notation defined by
Dirnstorfer [Dirnstorfer, 2004]. For the purpose of this document we will
explore the steps necessary for actually deriving an algorithm to evaluate
ThetaML. We will not consider efficiency, but purely focus on operation
in principle. In the end we want to show that ThetaML really specifies a
unique financial problem and provide an intuition of what a numerical
solver for these general problems looks like.

One possibility for solving pricing problems defined in ThetaML
could be solving the governing partial differential equation. Depending
on the type of stochastic processes, PDE solvers can be a good choice since
they can be very precise and quick, especially for low-dimensional mod-
els. Examples for the process of the underlying where corresponding
PDEs are known include geometric Brownian motion (GBM) and GBM
with Heston volatility. If the underlying follows a GBM with jumps, then
an integro partial differential equation (IPDE) is the equivalent problem,
which can be solved efficiently. Note that the financial product itself
might still be too complex for a PDE solver, i.e. the dimension of the state
space could be too large. An example for this would be a moving window
Asian American option [Dirnstorfer et al., 2006].

Monte Carlo methods are much more general and are also suited for
high-dimensional tasks. The gain in flexibility is paid for by higher com-
putational workloads compared with specialized algorithms like PDE
solvers. But for many cases specialized algorithms do not exist and Monte
Carlo remains the only valid method.

In a model without backward references (e.g. V!), the internal variables
of the ThetaML model can be computed by simple sequential execution. In

model CompoundOption

import EUR "Numeraire"

import S "Stock price"

import T1 "Maturity of outer option"

import T2 "Maturity of inner option"

export P "Price"

P = E(V!)

theta T1

V = max(Pb! − 10 EUR, 0)

call BermudanOption

import Pb from P

export T2 to T

export EUR, S

end

loop T/dt

theta dt

...

end

WILMOTT magazine 7

W

TECHNICAL ARTICLE 1

models with backward references, the assignments defined in the
ThetaML model have to be rearranged to a computable order. Then it is
again straightforward to execute the rearranged code, except for the ex-
pectation function E().

In fact, the expectation E(Y) is the conditional expected value based
on the filtration Ft, i.e. the scenario values X of all previous time-steps

E(Y|X) := E (Y|Ft).

That means X contains all information required for computing E (Y|Ft).
For example pricing a vanilla American put option, Ft may contain sole-
ly the current asset price (St).

For constructing a numerical estimator of E(Y|Ft), a smoothing
method is required which serves as an estimator of this conditional ex-
pectation. This kind of problem is well known in statistics, such that we
refer the reader to Härdle for more details [Härdle, 1992] of the solution.
In option pricing, (Carrière, 1996) introduced the nonparametric regres-
sion to the pricing of early-exerciseable options. Later, (Longstaff and
Schwartz, 2001) simplified his algorithm and obtained some lower-
bounds on the option price by considering out-of-sample values.

Consider n realizations of Monte Carlo samples Yi, Xi for i = 1, . . . , n
at time t. Then the conditional expectation can be approximated by
E(Y|X) ≈ f (x), where

f (x) =
∑

cibi(x)

and the coefficients ci of basis function bi can be obtained by solving the
least-squares minimization

min
c

∑
(f (Xi) − Yi)

2
.

Useful basis functions bi are e.g. polynomials or splines.

Conclusion
With ThetaML we have introduced a language that is powerful enough to
represent financial products in the form of a simple computer program.
The power of this language lies in the fact that the description of the

product, the stochastic model and the numerical implementation are
separated. Each individual component is much easier to understand than
a complex numerical algorithm containing all three aspects in one piece
of low level computer code.

The above examples already give an idea of how financial product fea-
tures are represented in the proposed language. Essentially, ThetaML is a
programming language that has the unique features of backward vari-
able access and implicit functions for conditional stochastic values. These
features enable new applications in financial engineering, such as the
definition of trading strategies on structured products or the definition
of investments and real options.

In a follow-up paper we will discuss the use of ThetaML to construct
risk-optimal dynamic trading strategies. We will show how to use any of
the previously defined products to hedge any other financial product.

REFERENCES

N. Bastian and R. Benders. Sturz von der Zinsleiter. Handelsblatt, 01.04.2008.
J. F. Carrière. Valuation of the early-exercise price for options using simulations and non-
parametric regression. Insurance: Mathematics and Economics, 19:19–30, 1996.
S. Dirnstorfer, A. J. Grau, and R. Zagst. Moving window Asian options: Sparse grids and
Least-Squares Monte Carlo. Working paper, grau@thetaris.com, December 2006.
S. Dirnstorfer. On the representation of trading strategies and financial portfolios. In
Intelligent Finance - Convergence of Financial Mathematics with Technical and
Fundamental Analysis, Proc. 1st Int. Workshop on Intelligent Finance (IWIF-I), ISBN
187685118X, pages 131–143, Melbourne, Australia, 2004.
S. Dirnstorfer. Mulitscale calculus with applications in quantitative finance. PhD thesis, TU-
München, Germany, Fakultät für Informatik, 2006.
Arie Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an annotated bibli-
ography. ACM SIGPLAN Notices, 35:26 – 36, 2000.
Fpml 4.0 specification. Technical report, www.fpml.com, 2004.
W. Härdle. Applied Nonparametric Regression. Cambridge University Press, 1992.
S. P. Jones, J.-M. Eber, and J. Seward. Composing contracts: an adventure in financial
engineering. In Proc. 5th Int. Conf. on Functional Programming, pages 280–292, 2000.
F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation – a simple
least-squares approach. The Review of Financial Studies, 14(1):113–147, 2001.
Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

